论文标题
利用可解释的模式用于码头自行车共享系统中的流量预测
Exploiting Interpretable Patterns for Flow Prediction in Dockless Bike Sharing Systems
论文作者
论文摘要
与传统的基于码头的系统不同,在灵活性方面,无码头自行车共享系统对用户更方便。但是,这些码头系统的灵活性是以管理和操作复杂性为代价的。实际上,自行车的不平衡和动态使用导致强制性重新平衡操作,这对有效的自行车交通流量预测施加了至关重要的需求。尽管在开发交通流量预测模型方面已做出了努力,但现有方法缺乏可解释性,因此在实际部署中的价值有限。为此,我们提出了一个可解释的自行车流预测(IBFP)框架,该框架可以提供有效的自行车流量预测,并具有可解释的流量模式。具体而言,通过根据流量密度将城市区域划分为区域,我们首先模拟具有图形正则稀疏表示区域之间的时空自行车流,在该区域之间,将图形laplacian用作平滑的操作员来保留周期数据结构的共同点。然后,我们使用稀疏表示的子空间聚类从自行车流中提取交通模式,以构建可解释的基础矩阵。此外,可以使用可解释的基础矩阵和学习的参数来预测自行车流。最后,对现实世界数据的实验结果显示了无码头自行车共享系统中IBFP方法的优势。此外,通过案例研究进一步说明了我们的流程模式开发的可解释性,在该案例研究中,IBFP为自行车流量分析提供了宝贵的见解。
Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of flexibility. However, the flexibility of these dockless systems comes at the cost of management and operation complexity. Indeed, the imbalanced and dynamic use of bikes leads to mandatory rebalancing operations, which impose a critical need for effective bike traffic flow prediction. While efforts have been made in developing traffic flow prediction models, existing approaches lack interpretability, and thus have limited value in practical deployment. To this end, we propose an Interpretable Bike Flow Prediction (IBFP) framework, which can provide effective bike flow prediction with interpretable traffic patterns. Specifically, by dividing the urban area into regions according to flow density, we first model the spatio-temporal bike flows between regions with graph regularized sparse representation, where graph Laplacian is used as a smooth operator to preserve the commonalities of the periodic data structure. Then, we extract traffic patterns from bike flows using subspace clustering with sparse representation to construct interpretable base matrices. Moreover, the bike flows can be predicted with the interpretable base matrices and learned parameters. Finally, experimental results on real-world data show the advantages of the IBFP method for flow prediction in dockless bike sharing systems. In addition, the interpretability of our flow pattern exploitation is further illustrated through a case study where IBFP provides valuable insights into bike flow analysis.