论文标题

$ n $ -lie Superalgebra的Schur乘数

The Schur multiplier of an $n$-Lie superalgebra

论文作者

Safa, Hesam

论文摘要

在本文中,我们研究了$ n $ -lie superalgebra $ l $的Schur乘数$ \ Mathcal $ \ Mathcal {M}(L)$,并证明$ \ dim \ dimcal {m {m}(l)(l)\ leq \ leq \ sum___ \ Mathcal {l}(n-i,k)$,其中$ \ dim l =(m | k)$,$ \ nathcal {l}(0,k)= 1 $和$ \ Mathcal {l}(t,t,k)= \ sum_ = \ sum_ {j = 1} $ 1 \ leq t \ leq n $。此外,我们获得了$ \ Mathcal {m}(l)$的尺寸的上限,其中$ l $是具有一维派生的Superalgebra的nilpotent $ n $ -lie-lie Superalgebra。还提供了$ \ dim \ dim \ Mathcal {m}(l)$的几种不等式,以及$ n $ -lie-lie superalgebra类似物的相反。

In the present paper, we study the notion of the Schur multiplier $\mathcal{M}(L)$ of an $n$-Lie superalgebra $L$, and prove that $\dim \mathcal{M}(L) \leq \sum_{i=0}^{n} {m\choose{i}} \mathcal{L}(n-i,k)$, where $\dim L=(m|k)$, $\mathcal{L}(0,k)=1$ and $\mathcal{L}(t,k) = \sum_{j=1}^{t}{{t-1}\choose{j-1}} {k\choose j}$, for $1\leq t\leq n$. Moreover, we obtain an upper bound for the dimension of $\mathcal{M}(L)$ in which $L$ is a nilpotent $n$-Lie superalgebra with one-dimensional derived superalgebra. It is also provided several inequalities on $\dim\mathcal{M}(L)$ as well as an $n$-Lie superalgebra analogue of the converse of Schur's theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源