论文标题
磁化金属葡萄球源和拓扑绝缘子之间的化学迁移和偶极子形成
Chemical Migration and Dipole Formation at van der Waals Interfaces between Magnetic Transition Metal Chalcogenides and Topological Insulators
论文作者
论文摘要
金属和磁性叠加仪会通过接近效果改变拓扑绝缘子(TI)二硫化物(Bi $ _2 $ SE $ _3 $)的表面,但也通过更改BI $ _2 $ SE $ _3 $ _3 $ subselface的组成和化学结构。 BI $ _2 $ SE $ _3 $与Mn Metal或Manganese Selenide之间的接口是使用X射线光电子光谱(XPS)探索的,揭示了界面处的化学和电子变化。在BI $ _2 $ SE上存入MN金属,没有外部SE的外部来源,由于MN-SE键在MN层中显示出意外的键合,因为SE从BI $ _2 $ _2 $ SE $ _3 $层中扩散到成长中的MN膜中。 SE外扩散进一步证明了BI $ _2 $ SE $ _3 $层中的BI核心水平的变化,这主要表明BI-BI键在BI-SE键上进行了键合。当向MN提供过量的SE时,不会发生SE的远离扩散,这表明提供了足够的金属金属的chalcogen原子的重要性。但是,BI $ _2 $ SE $ _3 $核心级别光电子光光电子在沉积MNSE $ _ {2-X} $的单层后向更高的结合能进行了刚性的化学转移,表明叠加层中的偶极子。化学计量计算表明,单层优先形成MNSE,而不是过渡金属二北核化物(TMD)相MNSE $ _2 $,从而提供了偶极子形成的一致图片,其中Se nions平面位于Mn阳离子上方。这项研究表明,化学扩散和偶极子形成对于Mn-bi $ _2 $ SE $ _3 $和MNSE $ _ {2-X} $ - BI $ _2 $ _2 $ SE $ _3 $很重要,应仔细考虑使用TMD/Ti Interfaces。
Metal and magnetic overlayers alter the surface of the topological insulator (TI) bismuth selenide (Bi$_2$Se$_3$) through proximity effects but also by changing the composition and chemical structure of the Bi$_2$Se$_3$ sub-surface. The interface between Bi$_2$Se$_3$ and Mn metal or manganese selenide was explored using x-ray photoelectron spectroscopy (XPS) revealing chemical and electronic changes at the interface. Depositing Mn metal on Bi$_2$Se$_3$ without an external source of Se shows unexpected bonding within the Mn layer due to Mn-Se bonding as Se diffuses out of the Bi$_2$Se$_3$ layer into the growing Mn film. The Se out-diffusion is further evidenced by changes in Bi core levels within the Bi$_2$Se$_3$ layers indicating primarily Bi-Bi bonding over Bi-Se bonding. No out-diffusion of Se occurred when excess Se is supplied with Mn, indicating the importance of supplying enough chalcogen atoms with deposited metals. However, Bi$_2$Se$_3$ core level photoelectrons exhibited a rigid chemical shift toward higher binding energy after depositing a monolayer of MnSe$_{2-x}$, indicating a dipole within the overlayer. Stoichiometry calculations indicated that the monolayer forms MnSe preferentially over the transition metal dichalcogenide (TMD) phase MnSe$_2$, providing a consistent picture of the dipole formation in which a plane of Se anions sits above Mn cations. This study shows that chemical diffusion and dipole formation are important for Mn-Bi$_2$Se$_3$ and MnSe$_{2-x}$-Bi$_2$Se$_3$ and should be considered carefully for TMD/TI interfaces more generally.