论文标题
深层暹罗域适应卷积神经网络,用于多光谱图像中的跨域变化检测
Deep Siamese Domain Adaptation Convolutional Neural Network for Cross-domain Change Detection in Multispectral Images
论文作者
论文摘要
最近,深度学习在变化检测任务中取得了令人鼓舞的表现。但是,深层模型是特定于任务的,并且通常存在数据集偏差,因此很难将一个在一个多时间数据集(源域)(源域)训练的网络转移到另一个具有非常有限(甚至没有)标记数据(目标域)的多阶段数据集。在本文中,我们提出了一种新型的暹罗域适应性卷积神经网络(DSDANET)结构,用于跨域变化检测。在DSDANET中,暹罗卷积神经网络首先提取了来自多时间图像的空间光谱特征。然后,通过多个内核最大平均差异(MK-MMD),学习的特征表示形式嵌入到繁殖的内核希尔伯特空间(RKHS)中,其中可以显式地匹配两个域的分布。通过使用源标记的数据和目标未标记的数据优化网络参数和内核系数,DSDANET可以学习可转让的特征表示,可以弥合两个域之间的差异。据我们所知,这是第一次提出基于域的自适应深网进行变更检测。理论分析和实验结果证明了该方法的有效性和潜力。
Recently, deep learning has achieved promising performance in the change detection task. However, the deep models are task-specific and data set bias often exists, thus it is difficult to transfer a network trained on one multi-temporal data set (source domain) to another multi-temporal data set with very limited (even no) labeled data (target domain). In this paper, we propose a novel deep siamese domain adaptation convolutional neural network (DSDANet) architecture for cross-domain change detection. In DSDANet, a siamese convolutional neural network first extracts spatial-spectral features from multi-temporal images. Then, through multiple kernel maximum mean discrepancy (MK-MMD), the learned feature representation is embedded into a reproducing kernel Hilbert space (RKHS), in which the distribution of two domains can be explicitly matched. By optimizing the network parameters and kernel coefficients with the source labeled data and target unlabeled data, the DSDANet can learn transferrable feature representation that can bridge the discrepancy between two domains. To the best of our knowledge, it is the first time that such a domain adaptation-based deep network is proposed for change detection. The theoretical analysis and experimental results demonstrate the effectiveness and potential of the proposed method.