论文标题
使用基于物理的模型对频率调节市场的电池系统的多尺度模型预测控制
Multiscale Model Predictive Control of Battery Systems for Frequency Regulation Markets using Physics-Based Models
论文作者
论文摘要
我们为固定电池系统提出了一个多尺度模型预测控制(MPC)框架,该框架利用了高保真模型,以权衡的短期经济激励措施(能源和频率调节(FR)市场)和长期退化效应。我们发现,MPC框架可以大大减少长期降低,同时适当响应FR和能源市场信号(与使用低保真模型的MPC配方相比)。我们的结果还提供了证据表明,通过使用现代的非线性编程求解器,可以将复杂的电池模型嵌入闭环MPC模拟中(我们提供了朱莉娅的高效且易于使用的实现)。我们使用模拟获得的见解来设计低复杂性MPC公式,该公式与高保真模型获得的行为匹配。这是通过设计合适的终端惩罚项来完成的,该终端罚款术语隐含地捕获长期退化。结果表明,可以通过正确设计成本函数来以低复杂性MPC公式来解释复杂的降解行为。我们认为,我们的概念验证结果可能具有工业相关性,因为电池供应商正在寻求参与快速变化的电力市场,同时保持资产完整性。
We propose a multiscale model predictive control (MPC) framework for stationary battery systems that exploits high-fidelity models to trade-off short-term economic incentives provided by energy and frequency regulation (FR) markets and long-term degradation effects. We find that the MPC framework can drastically reduce long-term degradation while properly responding to FR and energy market signals (compared to MPC formulations that use low-fidelity models). Our results also provide evidence that sophisticated battery models can be embedded within closedloop MPC simulations by using modern nonlinear programming solvers (we provide an efficient and easy-to-use implementation in Julia). We use insights obtained with our simulations to design a low-complexity MPC formulation that matches the behavior obtained with high-fidelity models. This is done by designing a suitable terminal penalty term that implicitly captures longterm degradation. The results suggest that complex degradation behavior can be accounted for in low-complexity MPC formulations by properly designing the cost function. We believe that our proof-of-concept results can be of industrial relevance, as battery vendors are seeking to participate in fast-changing electricity markets while maintaining asset integrity.