论文标题

Weyl先验和贝叶斯统计

Weyl Prior and Bayesian Statistics

论文作者

Jiang, Ruichao, Tavakoli, Javad, Zhao, Yiqiang

论文摘要

使用贝叶斯推理时,需要选择参数的先验分布。著名的Jeffreys先验是基于统计歧管上的Riemann度量张量。 Takeuchi和Amari定义了$α$ - 平行的先验,通过利用高阶几何对象(称为Chentsov-Amari张量),该$α$ - 平行的先验。在本文中,我们根据统计歧管上的Weyl结构提出了一个新的先验。事实证明,我们的先前是$α$ - 平行的特殊情况,其参数$α$等于$ -n $,其中$ n $是基础统计歧管的维度,而减号是$α$ - 连接定义中使用的惯例的结果。这是选择参数$α$的选择。我们计算了单变量高斯和多元高斯分布的Weyl先验。单变量高斯的先验事实证明是统一的先验。

When using Bayesian inference, one needs to choose a prior distribution for parameters. The well-known Jeffreys prior is based on the Riemann metric tensor on a statistical manifold. Takeuchi and Amari defined the $α$-parallel prior,, which generalized the Jeffreys prior by exploiting higher-order geometric object, known as Chentsov-Amari tensor. In this paper, we propose a new prior based on the Weyl structure on a statistical manifold. It turns out that our prior is a special case of the $α$-parallel prior with the parameter $α$ equals $-n$, where $n$ is the dimension of the underlying statistical manifold and the minus sign is a result of conventions used in the definition of $α$-connections. This makes the choice for the parameter $α$ more canonical. We calculated the Weyl prior for univariate Gaussian and multivariate Gaussian distribution. The Weyl prior of the univariate Gaussian turns out to be the uniform prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源