论文标题
变形的经典量子力学过渡
Deformed classical-quantum mechanics transition
论文作者
论文摘要
提出了一种研究通用系统的经典量子过渡的概括的方法。为了发展这个想法,提出了阶梯运算符代数的变形,其中包含量子组$ su(2)_q $作为特定情况的实现。在此变形中,普朗克的常数变成了一个运算符,其特征值以$ n $(数量运营商的特征值)的小值接近$ \ hbar $,而对于$ n $的大值(系统已经典)。
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2)_q$ as a particular case. In this deformation Planck's constant becomes an operator whose eigenvalues approach $\hbar $ for small values of $n$ (the eigenvalue of the number operator), and zero for large values of $n$ (the system is classicalized).