论文标题

非高斯连续变量门的Schrödinger猫状态制备

Schrödinger cat state preparation by non-Gaussian continuous variable gate

论文作者

Sokolov, Ivan V.

论文摘要

我们提出了一个非高斯连续变量(CV)栅极,能够有条件地产生在坐标和动量平面中良好分离的任意输入状态的两个“副本”的叠加 - schrödingercate状态。该栅极使用辅助振荡器的立方相状态作为非高斯资源,纠缠高斯门和同源性测量,该测量提供了有关目标系统规范变量的非唯一信息,这是该方案的关键特征。我们表明,这种非唯一性表现出可能通过将海森贝格图片扩展到测量引起的CV非高斯网络的演化而引起的问题,如果这是以一种常用的方法用于CV高斯量子信息方案的方法。

We propose a non-Gaussian continuous variable (CV) gate which is able to conditionally produce superposition of two "copies" of an arbitrary input state well separated in the coordinate and momentum plane - a Schrödinger cate state. The gate uses cubic phase state of an ancillary oscillator as a non-Gaussian resource, an entangling Gaussian gate, and homodyne measurement which provides nonunique information about the target system canonical variables, which is a key feature of the scheme. We show that this nonuniqueness manifests problems which may arise by extension of the Heisenberg picture onto the measurement-induced evolution of CV non-Gaussian networks, if this is done in an approach commonly used for CV Gaussian schemes of quantum information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源