论文标题

分配给量子设计的POVM的不确定性关系的rényi公式

Rényi formulation of uncertainty relations for POVMs assigned to a quantum design

论文作者

Rastegin, Alexey E.

论文摘要

信息熵提供了强大而灵活的方式来表达不确定性原则施加的限制。这种方法似乎非常适合应用量子信息理论问题。典型的问题是,这种问题涉及具有一个或另一个特定结构的测量。后者通常使我们能够改善来自足够一般范围的不确定性关系的熵界。量子设计已经在许多量子信息理论的问题中发现了使用,相关测量值的不确定性关系引起了人们的关注。在本文中,我们从分配给量子设计的POVM的最小肠和Rényi熵方面获得了不确定性关系。也解决了Landau-Pollak类型的关系。然后,使用二维的量子设计示例,然后将获得的下限与先前的界限进行比较。简要讨论了对熵转向不平等的影响。

Information entropies provide powerful and flexible way to express restrictions imposed by the uncertainty principle. This approach seems to be very suitable in application to problems of quantum information theory. It is typical that questions of such a kind involve measurements having one or another specific structure. The latter often allows us to improve entropic bounds that follow from uncertainty relations of sufficiently general scope. Quantum designs have found use in many issues of quantum information theory, whence uncertainty relations for related measurements are of interest. In this paper, we obtain uncertainty relations in terms of min-entropies and Rényi entropies for POVMs assigned to a quantum design. Relations of the Landau--Pollak type are addressed as well. Using examples of quantum designs in two dimensions, the obtained lower bounds are then compared with the previous ones. An impact on entropic steering inequalities is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源