论文标题

Deepedn:医学互联网的基于深度学习的图像加密和解密网络

DeepEDN: A Deep Learning-based Image Encryption and Decryption Network for Internet of Medical Things

论文作者

Ding, Yi, Wu, Guozheng, Chen, Dajiang, Zhang, Ning, Gong, Linpeng, Cao, Mingsheng, Qin, Zhiguang

论文摘要

医学互联网(IOMT)可以将许多医学成像设备连接到医疗信息网络,以促进诊断和治疗医生的过程。由于医疗图像包含敏感信息,因此保护患者的隐私或安全性既重要却又具有挑战性。在这项工作中,提出了基于深度学习的加密和解密网络(DEEPEDN),以实现加密和解密医学形象的过程。具体而言,在Deepedn中,循环生成对抗网络(Cycle-GAN)被用作主要学习网络,以将医疗图像从其原始域转移到目标域中。目标域被视为指导学习模型来实现加密的“隐藏因素”。加密图像通过重建网络恢复为原始图像,以实现图像解密。为了直接从受到隐私保护环境中直接促进数据挖掘,提出了一个感兴趣的区域(ROI) - 锻炼网络来从加密图像中提取兴趣的对象。在胸部X射线数据集上评估了所提出的深色。广泛的实验结果和安全性分析表明,所提出的方法可以在效率方面具有良好的性能达到高水平的安全性。

Internet of Medical Things (IoMT) can connect many medical imaging equipments to the medical information network to facilitate the process of diagnosing and treating for doctors. As medical image contains sensitive information, it is of importance yet very challenging to safeguard the privacy or security of the patient. In this work, a deep learning based encryption and decryption network (DeepEDN) is proposed to fulfill the process of encrypting and decrypting the medical image. Specifically, in DeepEDN, the Cycle-Generative Adversarial Network (Cycle-GAN) is employed as the main learning network to transfer the medical image from its original domain into the target domain. Target domain is regarded as a "Hidden Factors" to guide the learning model for realizing the encryption. The encrypted image is restored to the original (plaintext) image through a reconstruction network to achieve an image decryption. In order to facilitate the data mining directly from the privacy-protected environment, a region of interest(ROI)-mining-network is proposed to extract the interested object from the encrypted image. The proposed DeepEDN is evaluated on the chest X-ray dataset. Extensive experimental results and security analysis show that the proposed method can achieve a high level of security with a good performance in efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源