论文标题

$ \ overline {\ Mathcal {m} _ {0,n}} $上的二维周期类

Two-dimensional cycle classes on $\overline{\mathcal{M}_{0,n}}$

论文作者

Ramadas, Rohini, Silversmith, Rob

论文摘要

对于每个$ n \ ge5 $,我们给出了$ s_n $ equivariant的基础,$ h_4(\ overline {\ mathcal {m} _ {0,n}},\ mathbb {q})$ $ h_ {2(n-5)}(\ overline {\ mathcal {m} _ {0,n}},\ mathbb {q})$。存在这样的基础,以$ h_2(\ + overline {\ Mathcal {m} _ {0,n}},\ mathbb {q})$和$ h_ {2(n-4)}(\ edimalline {\ mathcal {\ mathcal {m} _ {0,n} _ {0,nsuists for Is Is Is Is in Is Is Is Is Is Is Is Is Is Is Is Is $ h_ {2k}(\ overline {\ mathcal {m} _ {0,n}},\ mathbb {q})$当$ 3 \ le le k \ le k \ le n-6 $。

For each $n\ge5$, we give an $S_n$-equivariant basis for $H_4(\overline{\mathcal{M}_{0,n}},\mathbb{Q})$, as well as for $H_{2(n-5)}(\overline{\mathcal{M}_{0,n}},\mathbb{Q})$. Such a basis exists for $H_2(\overline{\mathcal{M}_{0,n}},\mathbb{Q})$ and for $H_{2(n-4)}(\overline{\mathcal{M}_{0,n}},\mathbb{Q})$, but it is not known whether one exists for $H_{2k}(\overline{\mathcal{M}_{0,n}},\mathbb{Q})$ when $3\le k\le n-6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源