论文标题

通过细胞神经形态计算进行多模式的学习,脑启发的自组织

Brain-inspired self-organization with cellular neuromorphic computing for multimodal unsupervised learning

论文作者

Khacef, Lyes, Rodriguez, Laurent, Miramond, Benoit

论文摘要

皮质可塑性是使我们能够在环境中学习和适应能力的主要特征之一。确实,大脑皮层通过结构和突触可塑性机制自组织,这些机制很可能是在人类脑发育的极其有趣的特征的基础上:多模式关联。尽管感觉方式,例如视觉,声音和触摸,但大脑仍达到相同的概念(收敛)。此外,生物学观察结果表明,当两者相关时,一种方式可以激活另一种方式的内部表示(差异)。在这项工作中,我们提出了使用自组织图和类似于Hebbian的学习,​​基于重新进入理论的脑启发的神经系统的复入自组织图(Resom)。我们提出并比较了无监督学习和推理的不同计算方法,然后量化多模式分类任务中的过程的增益。发散机制用于根据另一种方式标记一种模式,而收敛机制用于提高系统的整体准确性。我们在构造的书面/口语数据库和DVS/EMG手势数据库上执行实验。提出的模型是在蜂窝神经形态架构上实现的,该构建能够通过局部连接进行分布式计算。我们展示了ROSOM引起的所谓硬件可塑性的增长,在该造影下,系统的拓扑不是由用户固定的,而是通过自我组织来学习系统的体验。

Cortical plasticity is one of the main features that enable our ability to learn and adapt in our environment. Indeed, the cerebral cortex self-organizes itself through structural and synaptic plasticity mechanisms that are very likely at the basis of an extremely interesting characteristic of the human brain development: the multimodal association. In spite of the diversity of the sensory modalities, like sight, sound and touch, the brain arrives at the same concepts (convergence). Moreover, biological observations show that one modality can activate the internal representation of another modality when both are correlated (divergence). In this work, we propose the Reentrant Self-Organizing Map (ReSOM), a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose and compare different computational methods for unsupervised learning and inference, then quantify the gain of the ReSOM in a multimodal classification task. The divergence mechanism is used to label one modality based on the other, while the convergence mechanism is used to improve the overall accuracy of the system. We perform our experiments on a constructed written/spoken digits database and a DVS/EMG hand gestures database. The proposed model is implemented on a cellular neuromorphic architecture that enables distributed computing with local connectivity. We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源