论文标题
刻有三角形和四边形的希尔伯特地区
The Hilbert area of inscribed triangles and quadrilaterals
论文作者
论文摘要
希尔伯特体积是真正的投影几何形状的不变。在多边形中刻有多边形。检查了Fock-Goncharov和笛卡尔坐标之间的对应关系。分析了铭文四边形的退化和希尔伯特地区。在退化下为有限的希尔伯特地区开发了微局部条件。该条件用于给出一系列严格的Hilbert区域和高盛参数的严格凸域。
Hilbert volume is an invariant of real projective geometry. Polygons inscribed in polygons are considered for the real projective plane. The correspondence between Fock-Goncharov and Cartesian coordinates is examined. Degeneration and Hilbert area of inscribed quadrilaterals are analyzed. A microlocal condition is developed for bounded Hilbert area under degeneration. The condition is applied to give a sequence of strictly convex domains with bounded Hilbert area and divergent Goldman parameters.