论文标题
纽顿后第六次二进制系统的本地动力学
Sixth post-Newtonian local-in-time dynamics of binary systems
论文作者
论文摘要
使用最近引入的方法[物理学\ rev. \ lett。\ {\ bf 123},231104(2019)],该方法将重力相互作用的二进制系统的保守动态分解为非局部零件的保守动力学,并将局部时间段的局部零件分解为newtonian后第六个动力学的本地部分(6pn)的本地部分(6pn)(6pn)的精确度。我们的策略结合了几种理论形式主义:牛顿后,后 - 昆科斯基,多极 - 束 - 米科夫斯基,有效的场理论,引力自我训练,有效的一身和Delaunay平均。得出了局部6PN哈密顿局(涉及151个数值系数)的完整功能结构,但包含四个未确定的数值系数。我们的6pn准确结果按订单完成$ g^3 $和$ g^4 $,并且在我们的6pn精度内,衍生的$ O(g^3)$散射角度同意[Phys。\ rev. \ lett。 20,201603(2019)]。我们所有的结果均以几种不同的量规不变方式表示。我们强调并至关重要地使用了两体动力学的质量比率依赖性的隐藏简单性的几个方面。
Using a recently introduced method [Phys.\ Rev.\ Lett.\ {\bf 123}, 231104 (2019)], which splits the conservative dynamics of gravitationally interacting binary systems into a non-local-in-time part and a local-in-time one, we compute the local part of the dynamics at the sixth post-Newtonian (6PN) accuracy. Our strategy combines several theoretical formalisms: post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, effective-field-theory, gravitational self-force, effective one-body, and Delaunay averaging. The full functional structure of the local 6PN Hamiltonian (which involves 151 numerical coefficients) is derived, but contains four undetermined numerical coefficients. Our 6PN-accurate results are complete at orders $G^3$ and $G^4$, and the derived $O(G^3)$ scattering angle agrees, within our 6PN accuracy, with the computation of [Phys.\ Rev.\ Lett.\ {\bf 122}, no. 20, 201603 (2019)]. All our results are expressed in several different gauge-invariant ways. We highlight, and make a crucial use of, several aspects of the hidden simplicity of the mass-ratio dependence of the two-body dynamics.