论文标题

步骤和痕迹

Steps and Traces

论文作者

Rot, Jurriaan, Jacobs, Bart, Levy, Paul

论文摘要

在山结构理论中,可以通过各种不同的方式定义痕量语义,包括通过代数逻辑,单月的Kleisli类别或其Eilenberg-Moore类别。本文详细阐述了两个新的统一思想:1)自然而然地呈现colagbraic trace语义语义,以共生代数为代数,而2)所有三种方法都作为同一抽象环境的实例出现。我们的观点将不同的方法置于一个共同的屋顶之下,并允许得出其中一些重合的条件。

In the theory of coalgebras, trace semantics can be defined in various distinct ways, including through algebraic logics, the Kleisli category of a monad or its Eilenberg-Moore category. This paper elaborates two new unifying ideas: 1) coalgebraic trace semantics is naturally presented in terms of corecursive algebras, and 2) all three approaches arise as instances of the same abstract setting. Our perspective puts the different approaches under a common roof, and allows to derive conditions under which some of them coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源