论文标题

通过张量学习的新的多层网络构建

A new multilayer network construction via Tensor learning

论文作者

Brandi, Giuseppe, Di Matteo, T.

论文摘要

事实证明,多层网络适合于提取和提供不同复杂系统的依赖性信息。这些网络的构建很困难,并且主要是通过静态方法完成的,从而忽略了时间延迟的相互依赖性。张量是自然代表多层网络的对象,在本文中,我们提出了一种基于Tucker Tensor自动进程的新方法,以直接从数据中构建多层网络。该方法可以捕获各个层之间连接之间和之间的连接之间,并利用过滤过程来提取相关信息并改善可视化。我们展示了这种方法在不同的固定固定分数差异的财务数据中的应用。我们认为,我们的结果对于了解财务风险的三个不同方面的依赖性,即市场风险,流动性风险和波动性风险很有用。确实,我们展示了所产生的可视化是一种有用的工具,对于描述不同风险因素之间的依赖性不对称的风险管理者和考虑延迟的交叉依赖性之间的依赖性不对称的工具。构造的多层网络显示了所有考虑的股票的量和价格层之间的较强互连,而确定了不确定性度量之间的互连数量较低。

Multilayer networks proved to be suitable in extracting and providing dependency information of different complex systems. The construction of these networks is difficult and is mostly done with a static approach, neglecting time delayed interdependences. Tensors are objects that naturally represent multilayer networks and in this paper, we propose a new methodology based on Tucker tensor autoregression in order to build a multilayer network directly from data. This methodology captures within and between connections across layers and makes use of a filtering procedure to extract relevant information and improve visualization. We show the application of this methodology to different stationary fractionally differenced financial data. We argue that our result is useful to understand the dependencies across three different aspects of financial risk, namely market risk, liquidity risk, and volatility risk. Indeed, we show how the resulting visualization is a useful tool for risk managers depicting dependency asymmetries between different risk factors and accounting for delayed cross dependencies. The constructed multilayer network shows a strong interconnection between the volumes and prices layers across all the stocks considered while a lower number of interconnections between the uncertainty measures is identified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源