论文标题

最佳II型二进制Z-互补对的新结构

New Construction of Optimal Type-II Binary Z-Complementary Pairs

论文作者

Gu, Zhi, Zhou, Zhengchun, Wang, Qi, Fan, Pingzhi

论文摘要

如果在{a}某些区域内的每个非零时班位上的每个非零时移,则称为z平衡对(ZCP),如果它具有零上的自相关总和为零,称为零相关区(ZCZ)。 ZCP分为两种类型{:} type-i ZCP和II型ZCP。 I型ZCP具有{} ZCZ周围的位置,II ZCP的ZCZ在端移位置周围具有ZCZ。 {到目前为止,仅报告了几个类型II ZCP的构建{在文献中},所有{}的长度$ 2^m \ pm1 $或$ n+1 $其中$ n = 2^a 10^a 10^a 10^b 26^c $和$ a,$ a,〜b,〜b,〜c $ is not-nemane Integers。在本文中,我们{提出}基于序列串联的ZCP的递归结构。受Turyn构造Golay互补对的启发,我们还提出了来自已知ZCP的II型ZCP的构造。所提出的构造可以生成具有新的灵活参数的最佳类型II ZCP,并具有任何奇数长度的Z-Optimal Type-II ZCP。此外,我们给出了所提出的ZCP的PMEPR上限。事实证明,我们的构造导致低PMEPR的ZCP。

A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums at each of the non-zero time-shifts within {a} certain region, called the zero correlation zone (ZCZ). ZCPs are categorised into two types{:} Type-I ZCPs and Type-II ZCPs. Type-I ZCPs have {the} ZCZ around the in-phase position and Type-II ZCPs have the ZCZ around the end-shift position. {Till now only a few} constructions of Type-II ZCPs are reported {in the literature}, and all {have} lengths of the form $2^m\pm1$ or $N+1$ where $N=2^a 10^b 26^c$ and $a,~b,~c$ are non-negative integers. In this paper, we {propose} a recursive construction of ZCPs based on concatenation of sequences. Inspired by Turyn's construction of Golay complementary pairs, we also propose a construction of Type-II ZCPs from known ones. The proposed constructions can generate optimal Type-II ZCPs with new flexible parameters and Z-optimal Type-II ZCPs with any odd length. In addition, we give upper bounds for the PMEPR of the proposed ZCPs. It turns out that our constructions lead to ZCPs with low PMEPR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源