论文标题
最佳II型二进制Z-互补对的新结构
New Construction of Optimal Type-II Binary Z-Complementary Pairs
论文作者
论文摘要
如果在{a}某些区域内的每个非零时班位上的每个非零时移,则称为z平衡对(ZCP),如果它具有零上的自相关总和为零,称为零相关区(ZCZ)。 ZCP分为两种类型{:} type-i ZCP和II型ZCP。 I型ZCP具有{} ZCZ周围的位置,II ZCP的ZCZ在端移位置周围具有ZCZ。 {到目前为止,仅报告了几个类型II ZCP的构建{在文献中},所有{}的长度$ 2^m \ pm1 $或$ n+1 $其中$ n = 2^a 10^a 10^a 10^b 26^c $和$ a,$ a,〜b,〜b,〜c $ is not-nemane Integers。在本文中,我们{提出}基于序列串联的ZCP的递归结构。受Turyn构造Golay互补对的启发,我们还提出了来自已知ZCP的II型ZCP的构造。所提出的构造可以生成具有新的灵活参数的最佳类型II ZCP,并具有任何奇数长度的Z-Optimal Type-II ZCP。此外,我们给出了所提出的ZCP的PMEPR上限。事实证明,我们的构造导致低PMEPR的ZCP。
A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums at each of the non-zero time-shifts within {a} certain region, called the zero correlation zone (ZCZ). ZCPs are categorised into two types{:} Type-I ZCPs and Type-II ZCPs. Type-I ZCPs have {the} ZCZ around the in-phase position and Type-II ZCPs have the ZCZ around the end-shift position. {Till now only a few} constructions of Type-II ZCPs are reported {in the literature}, and all {have} lengths of the form $2^m\pm1$ or $N+1$ where $N=2^a 10^b 26^c$ and $a,~b,~c$ are non-negative integers. In this paper, we {propose} a recursive construction of ZCPs based on concatenation of sequences. Inspired by Turyn's construction of Golay complementary pairs, we also propose a construction of Type-II ZCPs from known ones. The proposed constructions can generate optimal Type-II ZCPs with new flexible parameters and Z-optimal Type-II ZCPs with any odd length. In addition, we give upper bounds for the PMEPR of the proposed ZCPs. It turns out that our constructions lead to ZCPs with low PMEPR.