论文标题

考虑自旋的考虑,了解氧气进化反应(OER)

Understanding the mechanism of oxygen evolution reaction (OER) with the consideration of spin

论文作者

Li, Xiaoning, Cheng, Zhenxiang, Wang, Xiaolin

论文摘要

氧气进化反应(OER)与可棘手的高电势是可充电金属空气电池,水电系统和太阳能燃料设备的速率限制步骤。从旋转单线OH-/H2O反应物到自旋三重型O2产品存在自旋状态过渡,尚未受到足够的关注。从这个角度来看,我们尝试在整个OER过程中回顾电子行为,并考虑自旋属性。无论不同的电催化剂采用的机制如何,例如吸附物进化机制(AEM)或晶格氧机制(LOM),基本的基本原理是,在O = O = O = O = O之前,主动位置必须在四个电子中提取四个电子中的三个电子。 OER的这种自旋敏感性对电催化剂(尤其是在旋转结构上)的额外高需求叠加,以补充界面中的快速电子传递,以自旋选择并顺利交付。当优化迎合自旋敏感性OER的几何和电子结构时,需要意识到自旋,电荷,轨道和晶格之间的耦合。还简要讨论了一些与自旋相关的物理特性,例如(1)晶体场,(2)协调,(3)氧化,(4)键合,(5)EG电子数,(6)电导率和(7)磁性。希望我们的观点能够在OER缓慢动力学的基础物理学上阐明灯光,从而为更有效的能量转换电催化剂设计提供合理的指导。

Oxygen evolution reaction (OER) with intractable high overpotential is the rate-limiting step for rechargeable metal-air battery, water electrolysis systems, and solar fuels devices. There exists a spin state transition from spin singlet OH-/H2O reactant to spin triplet O2 product, which has not received enough attention yet. In this perspective, we attempt to retrospect electron behaviours during the whole OER process, with the consideration of spin attribute. Regardless of the adopted mechanisms by different electrocatalysts, for example, adsorbate evolution mechanism (AEM) or lattice oxygen mechanism (LOM), the underlying rationale is that active sites have to extract three in four electrons with the same spin direction before the formation of O=O. This spin-sensitive nature of OER superimposes additional high requirements on the electrocatalysts, especially on the spin structure, to compliment the fast electron transfer in the interface with spin selection and smoothly delivery afterwards. When optimizing the geometric and electronic structures catering for the spin-sensitive OER, awareness of the couplings between spin, charge, orbital and lattice is necessary. Some spin-correlated physical properties, such as (1) crystal field, (2) coordination, (3) oxidation, (4) bonding, (5) eg electron number, (6) conductivity and (7) magnetism, are also discussed briefly. It is hoped that our perspective could shed lights on the underlying physics of the slow kinetics of OER, providing a rational guidance for more effective energy conversion electrocatalysts designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源