论文标题

路径独特的解决方案和随机平均,用于由布朗运动和布朗运动驱动的混合随机部分微分方程

Pathwise unique solutions and stochastic averaging for mixed stochastic partial differential equations driven by fractional Brownian motion and Brownian motion

论文作者

Pei, Bin, Inahama, Yuzuru, Xu, Yong

论文摘要

本文专门针对一个随机部分微分方程(SPDE)的系统,该系统具有由小数布朗运动(FBM)驱动的缓慢组分,其中hurst参数$ h> 1/2 $以及由快速变化扩散驱动的快速组件。它在两个方面改善了以前的工作:首先,使用停止时间技术和FBM的近似值,我们证明了由FBM和Brownian Motion驱动的一类混合SPDE的存在和独特定理。其次,建立了由FBM驱动的SPDE的平均原理,但要经受额外的快速扩散过程。为了进行这些改进,我们将基于广义的Stieltjes集成理论与ITôStochasticconculus相结合。然后,我们获得了慢组分的所需极限过程,该过程强烈依赖于快速变化的扩散过程的不变度量。

This paper is devoted to a system of stochastic partial differential equations (SPDEs) that have a slow component driven by fractional Brownian motion (fBm) with the Hurst parameter $H >1/2$ and a fast component driven by fast-varying diffusion. It improves previous work in two aspects: Firstly, using a stopping time technique and an approximation of the fBm, we prove an existence and uniqueness theorem for a class of mixed SPDEs driven by both fBm and Brownian motion; Secondly, an averaging principle in the mean square sense for SPDEs driven by fBm subject to an additional fast-varying diffusion process is established. To carry out these improvements, we combine the pathwise approach based on the generalized Stieltjes integration theory with the Itô stochastic calculus. Then, we obtain a desired limit process of the slow component which strongly relies on an invariant measure of the fast-varying diffusion process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源