论文标题

端到端本地化的联合翻译和单位转换

Joint translation and unit conversion for end-to-end localization

论文作者

Dinu, Georgiana, Mathur, Prashant, Federico, Marcello, Lauly, Stanislas, Al-Onaizan, Yaser

论文摘要

各种自然语言任务需要处理文本数据,其中包含自然语言和形式语言(例如数学表达式)的混合。在本文中,我们以单元转换为例,并提出了一种数据增强技术,该技术导致模型同时学习翻译和转换任务,以及如何在它们之间充分切换它们以进行端到端的本地化。

A variety of natural language tasks require processing of textual data which contains a mix of natural language and formal languages such as mathematical expressions. In this paper, we take unit conversions as an example and propose a data augmentation technique which leads to models learning both translation and conversion tasks as well as how to adequately switch between them for end-to-end localization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源