论文标题

关于视频预测深度学习技术的评论

A Review on Deep Learning Techniques for Video Prediction

论文作者

Oprea, Sergiu, Martinez-Gonzalez, Pablo, Garcia-Garcia, Alberto, Castro-Vargas, John Alejandro, Orts-Escolano, Sergio, Garcia-Rodriguez, Jose, Argyros, Antonis

论文摘要

预测,预测和理由关于未来结果的能力是智能决策系统的关键组成部分。鉴于深度学习在计算机视觉中的成功,基于深度学习的视频预测是一个有前途的研究方向。视频预测被定义为一项自我监督的学习任务,代表了表示形式学习的合适框架,因为它证明了在自然视频中提取潜在模式的有意义表示的潜在能力。受到对这项任务的兴趣日益兴趣的动机,我们对视频序列预测的深度学习方法进行了审查。我们首先定义视频预测基础,以及强制性的背景概念和最常用的数据集。接下来,我们仔细分析了根据拟议的分类法组织的现有视频预测模型,突出了它们的贡献及其在该领域的意义。数据集和方法的摘要伴随着实验结果,可促进根据定量评估技术的评估。通过得出一些一般结论,确定开放的研究挑战并指出未来的研究方向来概括本文。

The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising research direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos. Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences. We firstly define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying open research challenges and by pointing out future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源