论文标题

整数程序的线性松弛,用于联合关闭的猜想

The Linear Relaxation of an Integer Program for the Union-Closed Conjecture

论文作者

Amaral, Brianna, Dalton, Lucien, Polakowski, Drew, Raymond, Annie, Thomas, Bertram

论文摘要

弗兰克(Frankl)的猜想,也称为联盟锁定的集合,指出,在任何有限的非平衡工会封闭的家庭中,至少有一半的集合中存在一个元素。令$ f(n,a)$为$ n $元素的地面集合中的最大套装数量,其中每个元素最多包含在$ a,n \ in \ mathbb {n}^+$中。证明所有$ a,n \ in \ mathbb {n}^+$的$ f(n,a)\ leq 2a $等同于证明弗兰克尔的猜想。通过考虑Pulaj,Raymond和Theis在新猜想中提出的整数编程公式的线性放松,我们证明$ O(a^2)$是$ f(n,a)$的上限。我们还提供了可以加强这种结果的不同方式。此外,我们提供了一个新的证明,即$ f(n,2^{n-1} -1)= 2^n-n $。

The Frankl conjecture, also known as the union-closed sets conjecture, states that in any finite non-empty union-closed family, there exists an element in at least half of the sets. Let $f(n,a)$ be the maximum number of sets in a union-closed family on a ground set of $n$ elements where each element is in at most $a$ sets for some $a,n\in \mathbb{N}^+$. Proving that $f(n,a)\leq 2a$ for all $a, n \in \mathbb{N}^+$ is equivalent to proving the Frankl conjecture. By considering the linear relaxation of the integer programming formulation that was proposed in New Conjectures for Union-Closed Families by Pulaj, Raymond and Theis, we prove that $O(a^2)$ is an upper bound for $f(n,a)$. We also provide different ways that this result could be strengthened. Additionally, we give a new proof that $f(n,2^{n-1}-1)=2^n-n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源