论文标题
保存离散结构。指标的观点
Preservation of discrete structures. A metric point of view
论文作者
论文摘要
在80年代初期,Alain Quilliot在公制空间方面提出了一种有序集和图的方法,而距离的值不是正实数,而不是正实数,是有序的单体元素的元素。 Jawhari,Misane,Pouzet,Rosenberg和Kabil在一系列论文中进一步发展了这一观点。目前,Rosenberg,Kabil和Pouzet,Bandelt,Pouzet和Saïdane,Khamsi和Pouzet发布了一些结果。本文的作者开发了特殊方面。一项关于广义度量空间的调查正在印刷中。在本文中,我们简要回顾了广义度量空间理论的显着方面,然后通过操作,关系集,尤其是二进制关系,尤其是等效关系来说明保存的特性。
In the early 80's, Alain Quilliot presented an approach of ordered sets and graphs in terms of metric spaces, where instead of positive real numbers, the values of the distance are elements of an ordered monoid equipped with an involution. This point of view was further developed in a series of papers by Jawhari, Misane, Pouzet, Rosenberg and Kabil. Some results are currently published by Rosenberg, Kabil and Pouzet, Bandelt, Pouzet and Saïdane, Khamsi and Pouzet. Special aspects were developed by the authors of the present paper. A survey on generalized metric spaces is in print. In this paper, we review briefly the salient aspects of the theory of generalized metric spaces, then we illustrate the properties of the preservation, by operations, of sets of relations, notably binary relations, and particularly equivalence relations.