论文标题
具有可变旋转/试剂强度的ISING模型
Ising model with variable spin/agent strengths
论文作者
论文摘要
我们将各种自旋强度引入了统计物理学的中心支柱Ising模型。考虑到不均匀的物理系统,但也预期了跨学科的应用,我们介绍了各个复杂程度的网络结构的模型。我们为幂律旋转强度的通用案例解决了它,发现该模型具有丰富的相图,并具有新的普遍性类别。实际上,可变旋转添加的复杂性程度是通过赋予具有越来越现实的几何形状的简单网络来增加的。它适用于在多体系统中建模新兴现象的情况下,旋转或代理的非相同性起着至关重要的作用并导出物理以外的统计物理概念。
We introduce varying spin strengths to the Ising model, a central pillar of statistical physics. With inhomogeneous physical systems in mind, but also anticipating interdisciplinary applications, we present the model on network structures of varying degrees of complexity. We solve it for the generic case of power-law spin strength and find that, with a self-averaging free energy, the model has a rich phase diagram with new universality classes. Indeed, the degree of complexity added by variable spins is on a par to that added by endowing simple networks with increasingly realistic geometries. It is suitable for modeling emergent phenomena in many-body systems in contexts where non-identicality of spins or agents plays an essential role and for exporting statistical physics concepts beyond physics.