论文标题
左中央位置以素质和半伽玛戒指的谎言理想
Left centralizers on Lie ideals in prime and semiprime gamma rings
论文作者
论文摘要
让$ u $是2个torsion免费的prime $γ$ - $ m $的谎言理想,以便u $中的所有$ u \ u $ in u $ in u $和$α\inγ$。如果$ t:m \ rightArrow m $是一个添加映射,满足关系$ t(uαu)= t(u)αu$ in u $ in u $ in u $ in u $和$α\inγ$inγ$,那么我们证明$ t(uαv)= t(uαv)= t(u t(u $)αV$ in u $ $ $ u,v \ in u $和$ $ y $ and的$ y \ y \ y \ y \ \ y \ f in。此外,该结果将扩展到半弹药$γ$ - 环。
Let $U$ be a Lie ideal of a 2-torsion free prime $Γ$-ring $M$ such that $uαu\in U$ for all $u\in U$ and $α\inΓ$. If $T:M\rightarrow M$ is an additive mapping satifying the relation $T(uαu)=T(u)αu$ for all $u\in U$ and $α\inΓ$, then we prove that $T(uαv)=T(u)αv$ for all $u, v\in U$ and $α\inΓ$. Also this result is extended to semiprime $Γ$-rings.