论文标题

真实的日志曲线,中心品种,热带曲线和日志Welschinger不变性

Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants

论文作者

Argüz, Hülya, Bousseau, Pierrick

论文摘要

我们给出一个热带描述,描述了真实日志曲线在感谢您的感谢您的曲折变性中的计数。我们处理零曲线属和所有非纯净较高的情况的情况。该证明依赖于对数变形理论,是对复杂曲线的热带对应定理的Nishinou-Siebert方法的真实版本。在第二个维度中,我们使用类似的技术来研究使用Welschinger符号的真实对数曲线的计数,并获得了Mikhalkin的Welschinger不变性的热带对应定理的新证明。

We give a tropical description of the counting of real log curves in toric degenerations of toric varieties. We treat the case of genus zero curves and all non-superabundant higher-genus situations. The proof relies on log deformation theory and is a real version of the Nishinou-Siebert approach to the tropical correspondence theorem for complex curves. In dimension two, we use similar techniques to study the counting of real log curves with Welschinger signs and we obtain a new proof of Mikhalkin's tropical correspondence theorem for Welschinger invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源