论文标题

CNN编码器降低运动计划数据图像的维度

CNN Encoder to Reduce the Dimensionality of Data Image for Motion Planning

论文作者

Ferreira, Janderson, Júnior, Agostinho A. F., Galvão, Yves M., Fernandes, Bruno J. T., Barros, Pablo

论文摘要

许多现实世界应用需要路径计划算法来解决不同领域的任务,例如社交应用,自动驾驶汽车和跟踪活动。最重要的是运动计划。尽管在大多数运动计划方案中使用路径计划足以使用,但它们代表了具有动态变化的大环境中潜在的瓶颈。为了解决这个问题,可以减少可能的路线的数量,以使计划算法更容易通过更少的努力找到最短的路径。用于路径规划的传统算法是A*,它使用启发式方法比其他解决方案更快。在这项工作中,我们提出了一个能够消除运动计划问题的无用路线的CNN编码器,然后将提出的神经网络输出与A*相结合。为了衡量解决方案的效率,我们提出了一个具有运动计划问题不同情况的数据库。评估的度量是找到最短路径的迭代次数。将A*与CNN编码器(建议)与A*进行了比较。在所有评估的方案中,我们的解决方案都将迭代次数减少了60 \%。

Many real-world applications need path planning algorithms to solve tasks in different areas, such as social applications, autonomous cars, and tracking activities. And most importantly motion planning. Although the use of path planning is sufficient in most motion planning scenarios, they represent potential bottlenecks in large environments with dynamic changes. To tackle this problem, the number of possible routes could be reduced to make it easier for path planning algorithms to find the shortest path with less efforts. An traditional algorithm for path planning is the A*, it uses an heuristic to work faster than other solutions. In this work, we propose a CNN encoder capable of eliminating useless routes for motion planning problems, then we combine the proposed neural network output with A*. To measure the efficiency of our solution, we propose a database with different scenarios of motion planning problems. The evaluated metric is the number of the iterations to find the shortest path. The A* was compared with the CNN Encoder (proposal) with A*. In all evaluated scenarios, our solution reduced the number of iterations by more than 60\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源