论文标题
相一致的生态领域适应
Phase Consistent Ecological Domain Adaptation
论文作者
论文摘要
我们介绍了两个标准,以使在没有带注释数据的域中学习分类器所涉及的优化,从而利用不同域中的注释数据,这是一个被称为无监督域适应的问题。我们专注于语义细分的任务,在该任务中,带注释的合成数据大量,但是注释的真实数据很费力。受视觉心理物理学启发的第一个标准是两个图像域之间的地图是相位的。这限制了一组可能的学习地图,同时可以使足够的灵活性传输语义信息。第二个标准旨在利用生态统计数字或现场的规律性,无论其特征是在其图像中表现出的,无论发光剂或成像传感器的特征如何。它是使用深层神经网络实现的,该网络得分在给定一个未经通知的图像的情况下,每次分割的可能性得分。将这两个先验纳入标准域的适应框架中,可以在最常见的无监督域适应性基准中提高整体性能,以进行语义分割。
We introduce two criteria to regularize the optimization involved in learning a classifier in a domain where no annotated data are available, leveraging annotated data in a different domain, a problem known as unsupervised domain adaptation. We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious. The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving. This restricts the set of possible learned maps, while enabling enough flexibility to transfer semantic information. The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor. It is implemented using a deep neural network that scores the likelihood of each possible segmentation given a single un-annotated image. Incorporating these two priors in a standard domain adaptation framework improves performance across the board in the most common unsupervised domain adaptation benchmarks for semantic segmentation.