论文标题
可扩展的主动学习以进行对象检测
Scalable Active Learning for Object Detection
论文作者
论文摘要
以完全监督的方式培训的深度神经网络是基于感知的自动驾驶系统中的主要技术。尽管收集大量未标记的数据已经是一项重大任务,但由于高质量注释所需的努力,人类只能标记其中的一部分。因此,找到正确的标签数据已成为一个关键挑战。主动学习是提高监督学习方法数据效率的强大技术,因为它旨在选择最小的培训集以达到所需的性能。我们已经建立了一个可扩展的生产系统,用于在自动驾驶领域中积极学习。在本文中,我们描述了由此产生的高级设计,绘制一些挑战及其解决方案,呈现我们当前的结果,并简要描述开放的问题和未来的方向。
Deep Neural Networks trained in a fully supervised fashion are the dominant technology in perception-based autonomous driving systems. While collecting large amounts of unlabeled data is already a major undertaking, only a subset of it can be labeled by humans due to the effort needed for high-quality annotation. Therefore, finding the right data to label has become a key challenge. Active learning is a powerful technique to improve data efficiency for supervised learning methods, as it aims at selecting the smallest possible training set to reach a required performance. We have built a scalable production system for active learning in the domain of autonomous driving. In this paper, we describe the resulting high-level design, sketch some of the challenges and their solutions, present our current results at scale, and briefly describe the open problems and future directions.