论文标题

确定性制造的量子点单光子源在电信O带中发出难以区分的光子

Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band

论文作者

Srocka, N., Mrowiński, P., Große, J., von Helversen, M., Heindel, T., Rodt, S., Reitzenstein, S.

论文摘要

在这项工作中,我们根据电信O波段中发出的INGAAS量子点(QD)开发和研究单光子源。量子设备是使用原位电子束光刻制造的,结合了热压缩键合,以实现背面金镜。我们的结构基于INGAAS/GAAS异质结构,其中QD发射通过菌株还原层以1.3μm向电信O带红移。通过阴极发光图映射预先选择的QD嵌入具有后侧金镜的台面结构中,以提高光子的攻击效率。在脉冲非共振润湿层激发下,在高达40 K的温度下进行光子自动相关测量,显示纯单光子发射,这使得将设备与Stirling Croyocoolers兼容独立操作。使用脉冲P-shell激发,我们实现了单光子发射,对G(2)(0)= 0.027 +-0.005,后选择后的两光子干扰(96 +-10)和相关的相干时间(212 +-25)PS。此外,结构的提取效率约为5%,这与该光子结构的数字模拟预期的值很好地比较。我们设备的进一步改进将通过光纤实施量子通信。

In this work we develop and study single-photon sources based on InGaAs quantum dots (QDs) emitting in the telecom O-band. The quantum devices are fabricated using in-situ electron beam lithography in combination with the thermocompression bonding to realize a backside gold mirror. Our structures are based on InGaAs/GaAs heterostructures, where the QD emission is redshifted towards the telecom O-band at 1.3 μm via a strain reducing layer. QDs pre-selected by cathodoluminescence mapping are embedded into mesa structures with a back-side gold mirror for enhanced photon-extraction efficiency. Photon-autocorrelation measurements under pulsed non-resonant wetting-layer excitation are performed at temperatures up to 40 K showing pure single-photon emission which makes the devices compatible with stand-alone operation using Stirling cryocoolers. Using pulsed p-shell excitation we realize single-photon emission with high multi-photon suppression of g(2)(0) = 0.027 +- 0.005, post-selected two-photon interference of about (96 +- 10) % and an associated coherence time of (212 +- 25) ps. Moreover, the structures show an extraction efficiency of ~5 %, which compares well with values expected from numeric simulations of this photonic structure. Further improvements on our devices will enable implementations of quantum communication via optical fibers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源