论文标题

DeepCovideXplainer:基于胸部X射线图像的可解释的Covid-19诊断

DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray Images

论文作者

Karim, Md. Rezaul, Döhmen, Till, Rebholz-Schuhmann, Dietrich, Decker, Stefan, Cochez, Michael, Beyan, Oya

论文摘要

在冠状病毒病(Covid-19)大流行中,人类经历了全球感染数量的迅速增加。挑战医院在与病毒作斗争中面临的是对入生患者的有效筛查。一种方法是评估胸部射线照相(CXR)图像,通常需要专家放射科医生的知识。在本文中,我们提出了一种可解释的深神经网络(DNN)的方法,用于自动检测CXR图像中的COVID-19症状,我们称之为DeepCovideXplainer。我们使用了15,959张CXR图像,其中15,854例患者涵盖了正常,肺炎和Covid-19病例。首先,在使用神经合奏方法进行增强和分类之前,首先对CXR图像进行全面的预处理,然后使用梯度引导的类激活图(GRAD-CAM ++)和层次相关性传播(LRP)突出显示类歧视区域。此外,我们提供了对预测的人类解释的解释。基于持有数据的评估结果表明,我们的方法可以自信地识别出91.6%,92.45%和96.12%的阳性预测值(PPV);对于正常,肺炎和Covid-19病例,精度,召回和F1得分分别为94.6%,94.3%和94.6%,使其在最近的方法中可比或改进结果。我们希望我们的发现将对与Covid-19的斗争做出有用的贡献,从更普遍的角度来看,在临床实践中越来越多地接受和采用AI辅助应用程序。

Amid the coronavirus disease(COVID-19) pandemic, humanity experiences a rapid increase in infection numbers across the world. Challenge hospitals are faced with, in the fight against the virus, is the effective screening of incoming patients. One methodology is the assessment of chest radiography(CXR) images, which usually requires expert radiologist's knowledge. In this paper, we propose an explainable deep neural networks(DNN)-based method for automatic detection of COVID-19 symptoms from CXR images, which we call DeepCOVIDExplainer. We used 15,959 CXR images of 15,854 patients, covering normal, pneumonia, and COVID-19 cases. CXR images are first comprehensively preprocessed, before being augmented and classified with a neural ensemble method, followed by highlighting class-discriminating regions using gradient-guided class activation maps(Grad-CAM++) and layer-wise relevance propagation(LRP). Further, we provide human-interpretable explanations of the predictions. Evaluation results based on hold-out data show that our approach can identify COVID-19 confidently with a positive predictive value(PPV) of 91.6%, 92.45%, and 96.12%; precision, recall, and F1 score of 94.6%, 94.3%, and 94.6%, respectively for normal, pneumonia, and COVID-19 cases, respectively, making it comparable or improved results over recent approaches. We hope that our findings will be a useful contribution to the fight against COVID-19 and, in more general, towards an increasing acceptance and adoption of AI-assisted applications in the clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源