论文标题

凸壳的理性地图和边界

Rational Maps and Boundaries of Convex Hulls

论文作者

Malkoun, Joseph

论文摘要

如果$ c_n(\ mathbb {r}^d)$表示$ n $不同点的配置空间,则$ \ mathbb {r}^d $,我们构造了一个映射$(f_m),$ $ $ $ $ $ m \ geq 1 $,其中\ [f_m:c_n(c_n(c_n(c_n(c_n(c_n(c_n(c_n), \ mathbb {r}^d \]是真实的分析性,并且具有C_n(\ Mathbb {r}^d)$的任何$ \ Mathbf {X} \ in任何$ \ Mathbf {x} \ a的属性,任何$ m \ geq 1 $ \ mathbb {r}^d $是一张理性地图,其图像位于$ \ mathbf {x} $的凸壳中。我们的近似猜想是,对于任何$ \ mathbf {x} \在c_n(\ m athbb {r}^d)$中,在我们的映射$ f_m(\ mathbf {x}, - )$下的球体$ s^{d-1} $的图像是$ nate $ nath $ nath $ naull的近似值。更准确地说,我们猜测\ [\ [\ propatorName {lim} _ {m \ to \ infty} d_h \ left(f_m(\ mathbf {x}, - )(s^{d-1})(s^{d-1}),\,\,\ partial \ partial \ partAtorname { $ d_h( - , - )$是hausdorff距离,$ \ operatorname {cons}(\ mathbf {x})$是$ \ mathbf {x} $ of $ \ mathbf {x} $和$ \ partial $的凸壳。这项工作将介绍计算机生成的图。

If $C_n(\mathbb{R}^d)$ denotes the configuration space of $n$ distinct points in $\mathbb{R}^d$, we construct a sequence of maps $(f_m),$ $m \geq 1$, where \[f_m: C_n(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d\] is real analytic, and has the property that for any $\mathbf{x} \in C_n(\mathbb{R}^d)$ and any $m \geq 1$, the map $f_m(\mathbf{x},-): \mathbb{R}^d \to \mathbb{R}^d$ is a rational map whose image lies in the convex hull of $\mathbf{x}$. Our Approximation Conjecture is that for any $\mathbf{x} \in C_n(\mathbb{R}^d)$, the image of the sphere $S^{d-1}$ under our map $f_m(\mathbf{x},-)$ is an approximation of the boundary of the convex hull of $\mathbf{x}$. More precisely, we conjecture that \[ \operatorname{lim}_{m \to \infty} d_H\left(f_m(\mathbf{x},-)(S^{d-1}), \,\partial \operatorname{Conv}(\mathbf{x}) \right) = 0, \] where $d_H(-,-)$ is the Hausdorff distance, $\operatorname{Conv}(\mathbf{x})$ is the convex hull of $\mathbf{x}$ and $\partial$ is the boundary operator. Computer generated plots will be presented in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源