论文标题

对话学习者 - 用于构建面向任务的对话系统的机器教学工具

Conversation Learner -- A Machine Teaching Tool for Building Dialog Managers for Task-Oriented Dialog Systems

论文作者

Shukla, Swadheen, Liden, Lars, Shayandeh, Shahin, Kamal, Eslam, Li, Jinchao, Mazzola, Matt, Park, Thomas, Peng, Baolin, Gao, Jianfeng

论文摘要

传统上,构建面向任务的对话系统的行业解决方案依赖于帮助对话作者定义基于规则的对话管理者,以对话流为“对话”流。虽然对话框流动性地可以解释,并且适用于简单场景,但就处理复杂对话所需的灵活性而言,它们的性能不足。另一方面,纯机制的模型可以处理复杂的对话框,但它们被认为是黑匣子,需要大量的培训数据。在此演示中,我们展示了对话学习者,这是一种用于构建对话经理的机器教学工具。它通过使对话框作者能够使用熟悉的工具来创建对话框,将对话框流程转换为参数模型(例如,神经网络),并允许对话框作者可以通过培训用户系统对话框通过机器教学界面来培训数据,从而将对话框转换为参数模型(例如神经网络),从而将对话框流动转换为参数模型(例如神经网络),从而将对话框流程转换为参数模型(例如,将对话框转换为参数模型(例如,参数模型),它将对话框转换为两种方法,从而结合了两种方法。

Traditionally, industry solutions for building a task-oriented dialog system have relied on helping dialog authors define rule-based dialog managers, represented as dialog flows. While dialog flows are intuitively interpretable and good for simple scenarios, they fall short of performance in terms of the flexibility needed to handle complex dialogs. On the other hand, purely machine-learned models can handle complex dialogs, but they are considered to be black boxes and require large amounts of training data. In this demonstration, we showcase Conversation Learner, a machine teaching tool for building dialog managers. It combines the best of both approaches by enabling dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model (e.g., neural networks), and allowing dialog authors to improve the dialog manager (i.e., the parametric model) over time by leveraging user-system dialog logs as training data through a machine teaching interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源