论文标题

在Bose-Einstein冷凝物中创建具有可控且接近零速度的孤子

Creating solitons with controllable and near zero velocity in Bose-Einstein condensates

论文作者

Fritsch, A. R., Lu, Mingwu, Reid, G. H., Piñeiro, A. M., Spielman, I. B.

论文摘要

确定性地创建深色孤子的建立技术,在排斥的原子玻色子凝结物(BEC)中只能访问狭窄的孤子速度。由于速度会影响单个孤子子的稳定性和孤子 - 索尼顿相互作用的特性,因此这种技术限制阻碍了实验进步。在这里,我们在高度各向异性雪茄形的BEC中创建了深色孤子,该BEC具有任意位置和速度,同时设计了冷凝水波函数的振幅和相位,从而改善了只有明确操纵冷凝物相的先前技术。真实1D系统中存在的单个深色孤子解决方案对应于各向异性3D系统中的扭结索尼顿,并与许多其他深色孤子(包括涡流环和孤子涡流溶液)结合在一起。我们很容易地创建深色孤子,其速度从零到一半的音速。观察到的孤子振荡频率表明,我们印刷了孤子涡旋,对于我们的雪茄形系统,这是这些速度期望的唯一稳定的孤子。我们对1D BEC的数值模拟表明,在稳定时,该技术对于创建扭结孤子同样有效。我们通过确定性地与两组分旋转器BEC中的域壁碰撞深色孤子来证明该技术的实用性。

Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wavefunction, improving upon previous techniques which only explicitly manipulated the condensate phase. The single dark soliton solution present in true 1D systems corresponds to the kink soliton in anisotropic 3D systems and is joined by a host of additional dark solitons including vortex ring and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源