论文标题

关于膜粘度对瞬态红细胞动力学的影响

On the effects of membrane viscosity on transient red blood cell dynamics

论文作者

Guglietta, F., Behr, M., Biferale, L., Falcucci, G., Sbragaglia, M.

论文摘要

当前,计算流体动力学(CFD)用于设计和改善生物医学设备的液压特性,其中大规模血液循环需要通过考虑介质上的红细胞(RBC)的机械反应来模拟。在许多实际情况下,生物医学设备的时间量表与RBC的内在放松时间相当:因此,对红细胞膜的时间依赖性响应的系统理解对于此类设备的有效设计至关重要。到目前为止,这些信息是从实验数据中得出的,这些信息不一定会适应实践中可以遇到的各种流体动态条件。这项工作探讨了研究红细胞膜对外部机械载荷的时间依赖性响应,该响应是通过AB-Initio,中尺度的数值模拟,主要侧重于对RBC弛豫时间$ T_C $的详细表征$ t_c $,hearteriation $ t_c $ p_c $ p_c $ p_c $。采用的中尺度模型利用了混合浸泡的边界晶体玻尔兹曼方法(IB-LBM),并与标准线性固体模型(SLS)相结合以说明RBC膜粘度。我们强调了2D膜粘度$μ_{M} $的关键重要性,以正确复制RBC膜的放松时间。还提供了对应用机械载荷类型和强度的依赖性的详细评估。总体而言,我们的发现开辟了有趣的未来观点,用于研究浸入时间依赖性应变场的RBC的非线性反应。

Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at mesoscales. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the the broad variety of the fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via ab-initio, mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time $t_c$ following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid model (SLS) to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity $μ_{m}$ to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源