论文标题
Sarason Toeplitz产品问题的一类Fock空间
Sarason Toeplitz product problem for a class of Fock spaces
论文作者
论文摘要
Sarason Toeplitz产品问题询问操作员TUTV何时在分析功能的各种Hilbert空间上进行了界定,其中U和V是分析性的。对于耐力空间和伯格曼空间上的Toeplitz运营商来说,这个问题是高度不平凡的(即使在单位磁盘的情况下)。在本文中,我们为复杂平面上一类Fock空间提供了一个完整的解决方案。特别是,这概括了Cho,Park和Zhu的早期结果。
Sarason Toeplitz product problem asks when the operator TuTv is bounded on various Hilbert spaces of analytic functions, where u and v are analytic. The problem is highly nontrivial for Toeplitz operators on the Hardy space and the Bergman space (even in the case of the unit disk). In this paper, we provide a complete solution to the problem for a class of Fock spaces on the complex plane. In particular, this generalizes an earlier result of Cho, Park, and Zhu.