论文标题

基于CNN-MOE的呼吸异常分类和肺部疾病检测的框架

CNN-MoE based framework for classification of respiratory anomalies and lung disease detection

论文作者

Pham, Lam, Phan, Huy, Palaniappan, Ramaswamy, Mertins, Alfred, McLoughlin, Ian

论文摘要

本文介绍并探讨了一个强大的深度学习框架,用于听诊分析。这旨在通过呼吸声记录对呼吸周期中的异常进行分类并检测疾病。框架始于前端特征提取,将输入声音转换为频谱图表示。然后,后端深度学习网络用于将频谱特征分类为呼吸异常周期或疾病类别。通过术语基准数据集进行呼吸道声音的实验证实了呼吸道分析的三个主要贡献。首先,我们对光谱图类型,光谱时间分辨率,重叠/非重叠窗口以及最终预测准确性的数据扩展进行了广泛的探索。这使我们提出了一个新颖的深度学习系统,建立在提议的框架上,该系统的表现优于当前的最新方法。最后,我们采用教师学生计划来实现模型性能和模型复杂性之间的权衡,这还有助于提高拟议的构建实时应用程序的框架的潜力。

This paper presents and explores a robust deep learning framework for auscultation analysis. This aims to classify anomalies in respiratory cycles and detect disease, from respiratory sound recordings. The framework begins with front-end feature extraction that transforms input sound into a spectrogram representation. Then, a back-end deep learning network is used to classify the spectrogram features into categories of respiratory anomaly cycles or diseases. Experiments, conducted over the ICBHI benchmark dataset of respiratory sounds, confirm three main contributions towards respiratory-sound analysis. Firstly, we carry out an extensive exploration of the effect of spectrogram type, spectral-time resolution, overlapped/non-overlapped windows, and data augmentation on final prediction accuracy. This leads us to propose a novel deep learning system, built on the proposed framework, which outperforms current state-of-the-art methods. Finally, we apply a Teacher-Student scheme to achieve a trade-off between model performance and model complexity which additionally helps to increase the potential of the proposed framework for building real-time applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源