论文标题
最完整的质量差异四拓扑重力
The most complete mass-dimension four topological gravity
论文作者
论文摘要
爱因斯坦重力理论的通常的Chern-Simons扩展在于为Hilbert Lagrangian添加平方的Riemann贡献,这意味着将平方曲线术语添加到线性寿命上的领先术语中,控制重力场的动力学。但是,以这种方式,拉格朗日由两个术语组成,具有不同数量的曲率,因此不是均匀的。为了形成对爱因斯坦重力的均匀的Chern-Simons校正,我们可以一方面使用上述方形曲面贡献作为对最通用的平方曲线拉格朗日的校正,或者另一方面,找到对Hilbert Lagrbert Lagrbert Lagrbert Lagrbert Lagrangian的一些线性曲线校正。在第一种情况下,我们将介绍最通用的正方形曲面指导术语,实际上,这是已经众所周知的可重新分配的stelle lagrangian。在第二种情况下,拓扑电流必须是仅根据引力自由度和统一质量维度而构建的轴向向量,我们将显示这样的对象。最终将评论这两种理论的比较。
The usual Chern-Simons extension of Einstein gravity theory consists in adding a squared Riemann contribution to the Hilbert Lagrangian, which means that a square-curvature term is added to the linear-curvature leading term governing the dynamics of the gravitational field. However, in such a way the Lagrangian consists of two terms with a different number of curvatures, and therefore not homogeneous. To develop a homogeneous Chern-Simons correction to Einstein gravity we may, on the one hand, use the above-mentioned square-curvature contribution as the correction for the most general square-curvature Lagrangian, or on the other hand, find some linear-curvature correction to the Hilbert Lagrangian. In the first case, we will present the most general square-curvature leading term, which is in fact the already-known re-normalizable Stelle Lagrangian. In the second case, the topological current has to be an axial-vector built only in terms of gravitational degrees of freedom and with a unitary mass dimension, and we will display such an object. The comparison of the two theories will eventually be commented.