论文标题
在预算限制下,社交网络中获得的收益最大化
Earned Benefit Maximization in Social Networks Under Budget Constraint
论文作者
论文摘要
给定一个用户不均匀选择成本的社交网络,\ textit {预算影响最大化}的问题(简而言之)要求在分配的预算中选择一个节点的子集以进行初始激活,从而使网络中的影响最大化。在本文中,我们研究了一个变化的问题,其中一组节点被指定为目标节点,每个节点都具有福利价值分配,可以通过影响它们来获得福利价值,而我们的目标是通过最初激活预算内的一组节点来最大程度地提高所获得的收益。我们将此问题称为\ textsc {获得的福利最大化问题}。首先,我们表明此问题是np \ mbox { - }硬函数,福利函数是\ textit {monotone},\ textIt {sub \ mbox { - }模块化}下的\ textit {ippertion cascade cascade model} dibfusion}。我们为此问题提出了一个增量的贪婪策略,并显示出较小的修改,它给出了$(1- \ frac {1} {\ sqrt {e}})$ \ mbox { - }因子近似值保证所获得的收益。接下来,通过利用益处函数的Sub \ mbox { - }模块化属性,我们提高了提出的贪婪算法的效率。然后,我们提出了一个基于Hop \ Mbox { - }的启发式方法,该方法基于对与目标节点相对应的有效邻居的“预期获得的好处”的计算来起作用。最后,我们使用四个Real \ Mbox { - }生活,公开可用的社交网络数据集进行了一系列广泛的实验。从实验中,我们观察到,与许多现有方法相比,所提出的算法选择的种子集可以实现更多的好处。特别是,发现基于Hop \ Mbox { - }方法比解决此问题的方法更有效。
Given a social network with nonuniform selection cost of the users, the problem of \textit{Budgeted Influence Maximization} (BIM in short) asks for selecting a subset of the nodes within an allocated budget for initial activation, such that due to the cascading effect, influence in the network is maximized. In this paper, we study this problem with a variation, where a set of nodes are designated as target nodes, each of them is assigned with a benefit value, that can be earned by influencing them, and our goal is to maximize the earned benefit by initially activating a set of nodes within the budget. We call this problem as the \textsc{Earned Benefit Maximization Problem}. First, we show that this problem is NP\mbox{-}Hard and the benefit function is \textit{monotone}, \textit{sub\mbox{-}modular} under the \textit{Independent Cascade Model} of diffusion. We propose an incremental greedy strategy for this problem and show, with minor modification it gives $(1-\frac{1}{\sqrt{e}})$\mbox{-}factor approximation guarantee on the earned benefit. Next, by exploiting the sub\mbox{-}modularity property of the benefit function, we improve the efficiency of the proposed greedy algorithm. Then, we propose a hop\mbox{-}based heuristic method, which works based on the computation of the `expected earned benefit' of the effective neighbors corresponding to the target nodes. Finally, we perform a series of extensive experiments with four real\mbox{-}life, publicly available social network datasets. From the experiments, we observe that the seed sets selected by the proposed algorithms can achieve more benefit compared to many existing methods. Particularly, the hop\mbox{-}based approach is found to be more efficient than the other ones for solving this problem.