论文标题

基于信息理论的最佳模型减少生物分子的方法

An information theory-based approach for optimal model reduction of biomolecules

论文作者

Giulini, Marco, Menichetti, Roberto, Shell, M. Scott, Potestio, Raffaello

论文摘要

在物理系统的理论建模中,一个关键步骤在于识别能够使其具有合成但有益的表示的自由度。尽管在某些情况下可以根据直觉和经验进行此选择,但对于许多复杂系统,最著名的杂聚物和大型生物分子而言,很难对忽略不计的重要特征进行直接歧视。我们在这里提出了一个基于热力学的理论框架,以通过测量其信息内容来评估给定简化表示的有效性。我们采用这种方法来识别蛋白质的减少描述,以其原子的一部分,保留了原始模型中最大的信息;我们表明,这些高度信息的表示具有共同的特征,这些特征与正在检查的蛋白质的生物学特性本质上相关,从而在蛋白质结构,能量和功能之间建立了桥梁。

In the theoretical modelling of a physical system a crucial step consists in the identification of those degrees of freedom that enable a synthetic, yet informative representation of it. While in some cases this selection can be carried out on the basis of intuition and experience, a straightforward discrimination of the important features from the negligible ones is difficult for many complex systems, most notably heteropolymers and large biomolecules. We here present a thermodynamics-based theoretical framework to gauge the effectiveness of a given simplified representation by measuring its information content. We employ this method to identify those reduced descriptions of proteins, in terms of a subset of their atoms, that retain the largest amount of information from the original model; we show that these highly informative representations share common features that are intrinsically related to the biological properties of the proteins under examination, thereby establishing a bridge between protein structure, energetics, and function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源