论文标题
Susy交织关系的概括:Fokker-Planck方程的新精确解决方案
Generalization of SUSY Intertwining Relations: New Exact Solutions of Fokker-Planck Equation
论文作者
论文摘要
众所周知,Fokker-Planck方程仅适用于某些特定系统,通常具有与时间无关的漂移系数。为了扩展可解决的问题类别,我们使用Susy量子力学的交织关系,但以新的不对称形式。事实证明,这种形式对于fokker-planck方程的解决方案很有用。像往常一样,交织在一起提供了两个不同系统之间的合作伙伴关系,均由Fokker-Planck方程描述。由于使用不对称的与合适的ANSATZ相互交织的关系,我们设法获得了一类新的分析可解决的模型。重要的是,这种方法使我们能够根据两个变量($ x,$ t。$ $ t。$ $ t。$ t。$ t。$ t。$ t。$ t。$ t。$t。
It is commonly known that the Fokker-Planck equation is exactly solvable only for some particular systems, usually with time-independent drift coefficients. To extend the class of solvable problems, we use the intertwining relations of SUSY Quantum Mechanics but in new - asymmetric - form. It turns out that this form is just useful for solution of Fokker-Planck equation. As usual, intertwining provides a partnership between two different systems both described by Fokker-Planck equation. Due to the use of an asymmetric kind of intertwining relations with a suitable ansatz, we managed to obtain a new class of analytically solvable models. What is important, this approach allows us to deal with the drift coefficients depending on both variables, $x,$ and $t.$ An illustrating example of the proposed construction is given explicitly.