论文标题
在张量 - 星期量表中,非问题自发标量的中子星理论
Non-topological spontaneously scalarized neutron stars in tensor-multi-scalar theories of gravity
论文作者
论文摘要
在本文中,我们在数值上构建了重力张量的重力理论中的新的非流感,自发标量的中子星,其目标空间是一个三维最大对称空间非平凡地图$φ:\ text {\ it SpaceTime} \ to \ text {\ it目标空间} $。重力允许标量的理论的特点是,场方程始终承认一般相对论解,但是对于某些参数空间的范围,它会失去稳定性,并且观察到标量场的非线性发展。因此,为了确定可能标量化的参数值,我们研究了在考虑的张量 - 星期理论的框架内一般相对论解决方案的稳定性。基于这些结果,我们可以获得一个标量分支的家族,其特征在于标量场节点的数量。这些分支从一般的相对论溶液中分叉,在新的不稳定模式出现的点上,它们在纯爱因斯坦溶液上更有利。有趣的是,在某些参数范围内,我们可以在标量解决方案的单个分支中获得非唯一性。
In the present paper, we numerically construct new non-topological, spontaneously scalarized neutron stars in the tensor-multi-scalar theories of gravity whose target space is a three-dimensional maximally symmetric space, namely either $\mathbb{S}^3$, $\mathbb{H}^3$ or $\mathbb{R}^3$, and in the case of a nontrivial map $φ: \text{\it spacetime} \to \text{\it target space}$. The theories of gravity admitting scalarization are characterized by the fact that the field equations always admit the general relativistic solution but for certain ranges of the parameters space it loses stability and nonlinear development of a scalar field is observed. Thus, in order to determine the values of the parameters where such scalarization is possible we studied the stability of the general relativistic solution within the framework of the considered tensor-multi-scalar theories. Based on these results we could obtain a family of scalarized branches characterized by the number of the scalar field nodes. These branches bifurcate from the general relativistic solution at the points where new unstable modes appear and they are energetically more favorable over the pure Einstein solutions. Interestingly, in certain parameter ranges, we could obtain non-uniqueness within a single branch of scalarized solutions.