论文标题

关于半线性抛物线系统解决方案的分析性的半径

On the radius of analyticity of solutions to semi-linear parabolic systems

论文作者

Chemin, Jean-Yves, Gallagher, Isabelle, Zhang, Ping

论文摘要

我们研究了分析性〜$ r(t)$的半径,这是针对比例不变半线性抛物线方程系统的强大解决方案。众所周知,在初始时间接近〜$ r(t)t^{ - \ frac12} $以正常数为界。在本文中,我们证明了〜$ \ displayStyle \ liminf_ {t \ rightArrow 0} r(t)t^{ - \ frac12} = \ infty $,并且假设初始数据的规律性更高,我们获得了改进的改进的下限下限近距离近距离零。作为一个应用程序,我们证明,对于任何全局解决方案〜$ u \ in c([0,\ infty); h^{\ frac12}(\ r^3))$的navier-stokes方程,其中保留〜$ \ displayStyle \ liminf_ {t \ rightArrow \ rightArrow \ infty} r(t)t^{ - \ frac12} = \ infty $。

We study the radius of analyticity~$R(t)$ in space, of strong solutions to systems of scale-invariant semi-linear parabolic equations. It is well-known that near the initial time,~$R(t)t^{-\frac12}$ is bounded from below by a positive constant. In this paper we prove that~$\displaystyle\liminf_{t\rightarrow 0} R(t)t^{-\frac12}= \infty$, and assuming higher regularity for the initial data, we obtain an improved lower bound near time zero. As an application, we prove that for any global solution~$u\in C([0,\infty); H^{\frac12}(\R^3))$ of the Navier-Stokes equations, there holds~$\displaystyle\liminf_{t\rightarrow \infty} R(t)t^{-\frac12}= \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源