论文标题
伯格曼内核的商在刺穿的里曼表面
Quotient of Bergman kernels on punctured Riemann surfaces
论文作者
论文摘要
在本文中,我们考虑了一个刺穿的Riemann表面,该表面具有一个遗传学度量,该指标等于刺穿的Poincar {é}公制,以及抛光线条束,使度量标准偏振。我们表明,线条束的高张量力的伯格曼内核以及奇异界面的Poincar {é}模型的Bergman内核的商往往趋向于张量的任意负功率。
In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincar{é} metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the Bergman kernel of high tensor powers of the line bundle and of the Bergman kernel of the Poincar{é} model near the singularity tends to one up to arbitrary negative powers of the tensor power.