论文标题
大规模退火处理器的次要启发式启发式方法,稀疏硬件图形最高为102,400个节点
Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102,400 nodes
论文作者
论文摘要
次要嵌入启发式方法已成为将四四级非约束二进制优化(QUBO)中的问题汇总到量子和CMOS退火处理器的硬件图中的必不可少的工具。尽管最近为中等大小(约2000个节点)的退火器开发了近期嵌入启发式方法,但最新的CMOS退火处理器的大小(带有102,400个节点)对嵌入启发式提出了全新的要求。这就提出了一个问题,如果最近的嵌入启发式方法可以在增加尺寸的硬件图表上保持有意义的嵌入性能。在这里,我们开发了一种改进的概率 - 换移减压(PSSA)嵌入启发式的版本(最近已证明它可以超越D-Wave Systems(Cai等,2014)的标准嵌入启发式,并评估其在增加尺寸的硬件图表上的嵌入性能。对于随机立方体和barabasi-albert图,我们发现改进的PSSA的嵌入性能始终超过最著名的完整图嵌入的阈值,分别为3.2和2.8,直到具有102,400个节点的硬件图。另一方面,对于具有恒定边缘密度的随机图,甚至没有改善的PSSA都可以克服通过存在最著名的完整图嵌入来保证的确定性阈值。最后,我们证明了在CMOS退火器的硬件图中的最大嵌入式大小上的新上限,并表明其当前最著名的完整图形嵌入的嵌入性能具有具有固定协调号码的硬件图形的最佳顺序。
Minor embedding heuristics have become an indispensable tool for compiling problems in quadratically unconstrained binary optimization (QUBO) into the hardware graphs of quantum and CMOS annealing processors. While recent embedding heuristics have been developed for annealers of moderate size (about 2000 nodes) the size of the latest CMOS annealing processor (with 102,400 nodes) poses entirely new demands on the embedding heuristic. This raises the question, if recent embedding heuristics can maintain meaningful embedding performance on hardware graphs of increasing size. Here, we develop an improved version of the probabilistic-swap-shift-annealing (PSSA) embedding heuristic [which has recently been demonstrated to outperform the standard embedding heuristic by D-Wave Systems (Cai et al., 2014)] and evaluate its embedding performance on hardware graphs of increasing size. For random-cubic and Barabasi-Albert graphs we find the embedding performance of improved PSSA to consistently exceed the threshold of the best known complete graph embedding by a factor of 3.2 and 2.8, respectively, up to hardware graphs with 102,400 nodes. On the other hand, for random graphs with constant edge density not even improved PSSA can overcome the deterministic threshold guaranteed by the existence of the best known complete graph embedding. Finally, we prove a new upper bound on the maximal embeddable size of complete graphs into hardware graphs of CMOS annealers and show that the embedding performance of its currently best known complete graph embedding has optimal order for hardware graphs with fixed coordination number.