论文标题

$ PD_3 $ - 组和HNN扩展

$PD_3$-groups and HNN Extensions

论文作者

Hillman, Jonathan A.

论文摘要

我们表明,如果$ pd_3 $ -group $ g $ split作为hnn扩展$ a*_cφ$其中$ c $是$ pd_3 $ - group,则$ h^1(g; \ m m i \ mathbb {z})中的poincarédual, $ f:g \ to \ mathbb {z} $带有内核的正常闭合$ a $。我们还对$ PD_3 $ -Groups进行了其他几种观察,这些观察结果分裂在$ PD_2 $ -Groups上。

We show that if a $PD_3$-group $G$ splits as an HNN extension $A*_Cφ$ where $C$ is a $PD_3$-group then the Poincaré dual in $H^1(G;\mathbb{Z})=Hom(G,\mathbb{Z})$ of the homology class $[C]$ is the epimorphism $f:G\to\mathbb{Z}$ with kernel the normal closure of $A$. We also make several other observations about $PD_3$-groups which split over $PD_2$-groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源