论文标题

视网膜分割的密集残留网络

Dense Residual Network for Retinal Vessel Segmentation

论文作者

Guo, Changlu, Szemenyei, Márton, Yi, Yugen, Xue, Ying, Zhou, Wei, Li, Yangyuan

论文摘要

视网膜血管分割在视网膜图像分析领域起着不可分类的作用,因为视网膜血管结构的变化可以帮助诊断高血压和糖尿病等疾病。在最近的研究中,已经提出了许多成功的底面图像分割方法。但是,对于其他视网膜成像方式,需要进行更多的研究来探索血管提取。在这项工作中,我们提出了一种有效的方法,以分割扫描激光眼镜检查(SLO)视网膜图像中的血管。受U-NET的启发,“功能地图重复使用”和剩余学习,我们提出了一个名为DRNET的深度密集的残留网络结构。在DRNET中,以前的块的特征图被自适应地汇总为后续层作为输入,这不仅促进了空间重建,而且由于更稳定的梯度,还可以更有效地学习。此外,我们引入了DropBlock,以减轻网络过度拟合的问题。我们在最近的SLO公共数据集上训练并测试该模型。结果表明,即使没有扩大数据,我们的方法也可以实现最先进的性能。

Retinal vessel segmentation plays an imaportant role in the field of retinal image analysis because changes in retinal vascular structure can aid in the diagnosis of diseases such as hypertension and diabetes. In recent research, numerous successful segmentation methods for fundus images have been proposed. But for other retinal imaging modalities, more research is needed to explore vascular extraction. In this work, we propose an efficient method to segment blood vessels in Scanning Laser Ophthalmoscopy (SLO) retinal images. Inspired by U-Net, "feature map reuse" and residual learning, we propose a deep dense residual network structure called DRNet. In DRNet, feature maps of previous blocks are adaptively aggregated into subsequent layers as input, which not only facilitates spatial reconstruction, but also learns more efficiently due to more stable gradients. Furthermore, we introduce DropBlock to alleviate the overfitting problem of the network. We train and test this model on the recent SLO public dataset. The results show that our method achieves the state-of-the-art performance even without data augmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源