论文标题
PatchVae:学习局部潜在代码以识别
PatchVAE: Learning Local Latent Codes for Recognition
论文作者
论文摘要
无监督的表示学习有望利用大量未标记的数据来学习一般表示形式。无监督学习的一种有希望的技术是变异自动编码器(VAE)的框架。但是,VAE所学到的无监督的表示形式被监督学习所学的人明显胜过。我们的假设是,要学习识别有用的表示形式,需要鼓励模型学习数据中重复和一致的模式。从中级表示工作中汲取灵感,我们提出了patchvae,即在斑块级别的图像原因。我们的主要贡献是一种瓶颈配方,它鼓励VAE框架中的中级风格表示。我们的实验表明,与Vanilla VAE学到的那些相比,通过我们的方法学到的表示在识别任务上的表现要好得多。
Unsupervised representation learning holds the promise of exploiting large amounts of unlabeled data to learn general representations. A promising technique for unsupervised learning is the framework of Variational Auto-encoders (VAEs). However, unsupervised representations learned by VAEs are significantly outperformed by those learned by supervised learning for recognition. Our hypothesis is that to learn useful representations for recognition the model needs to be encouraged to learn about repeating and consistent patterns in data. Drawing inspiration from the mid-level representation discovery work, we propose PatchVAE, that reasons about images at patch level. Our key contribution is a bottleneck formulation that encourages mid-level style representations in the VAE framework. Our experiments demonstrate that representations learned by our method perform much better on the recognition tasks compared to those learned by vanilla VAEs.