论文标题

基于网络渗透的洪水传播和衰退的基于网络渗透模型

A Network Percolation-based Contagion Model of Flood Propagation and Recession in Urban Road Networks

论文作者

Fan, Chao, Jiang, Xiangqi, Mostafavi, Ali

论文摘要

在这项研究中,我们提出了一种传染模型,作为一种简单而有力的数学方法,用于预测城市道路网络中洪水的发作和衰退的空间扩散和时间演变。城市道路网络有弹性的洪水事件,对于提供公共服务和应急响应至关重要。洪水在城市网络中的传播是一种复杂的时空现象。这项研究提出了一个数学传染模型,以描述城市道路网络中洪水的时空传播和衰退过程。在类似于类似于易感性的预期的(SEIR)模型的类似的普通微分方程中,可以基于三个宏观特征 - 洪水传播率($β$),洪水孵化率($α$)和回收率($μ$)来捕获网络内洪水的演变。我们将洪水传染模型与网络渗透过程相结合,其中,道路细分市场洪水的可能性取决于附近的道路细分市场被淹没的程度。 2017年哈维飓风期间,使用哈里斯县道路洪水的高分辨率历史数据验证了所提出的模型的应用。结果表明,该模型可以随着时间的推移监测和预测被淹没的道路的比例。此外,提议的模型可以在大部分经过测试的时间间隔内实现$ 90 \%$的精度,并召回被洪水淹没的道路的空间传播。研究结果表明,拟议的数学传染模型为急救人员,公职人员,公民,急救人员和其他决策者提供了巨大的潜力,以在道路网络中进行洪水预测。

In this study, we propose a contagion model as a simple and powerful mathematical approach for predicting the spatial spread and temporal evolution of the onset and recession of flood waters in urban road networks. A network of urban roads resilient to flooding events is essential for provision of public services and for emergency response. The spread of floodwaters in urban networks is a complex spatial-temporal phenomenon. This study presents a mathematical contagion model to describe the spatial-temporal spread and recession process of flood waters in urban road networks. The evolution of floods within networks can be captured based on three macroscopic characteristics-flood propagation rate ($β$), flood incubation rate ($α$), and recovery rate ($μ$)-in a system of ordinary differential equations analogous to the Susceptible-Exposed-Infected-Recovered (SEIR) model. We integrated the flood contagion model with the network percolation process in which the probability of flooding of a road segment depends on the degree to which the nearby road segments are flooded. The application of the proposed model was verified using high-resolution historical data of road flooding in Harris County during Hurricane Harvey in 2017. The results show that the model can monitor and predict the fraction of flooded roads over time. Additionally, the proposed model can achieve $90\%$ precision and recall for the spatial spread of the flooded roads at the majority of tested time intervals. The findings suggest that the proposed mathematical contagion model offers great potential to support emergency managers, public officials, citizens, first responders, and other decision makers for flood forecast in road networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源