论文标题

关于对数塔克与对数的关系

On the relationship between logarithmic TAQ and logarithmic THH

论文作者

Lundemo, Tommy

论文摘要

我们提供了对数拓扑的André-Quillen同源性的新描述,说明了增强环频谱的不可分解性。新的描述使我们能够将对数TAQ解释为一种抽象的cotangent复合体,并导致对数拓扑霍奇斯柴尔德同源性的基础变化公式。后者类似于离散环的Hochschild同源性以及麦卡锡·米纳斯(McCarthy-Minasian)和马修(Mathew)用于拓扑霍奇(Hochschild)同源性的hochschild同源性的结果。例如,我们的结果表明,对数THH满足了离散评估环的腐烂扩展的基础变化。

We provide a new description of logarithmic topological André-Quillen homology in terms of the indecomposables of an augmented ring spectrum. The new description allows us to interpret logarithmic TAQ as an abstract cotangent complex, and leads to an base-change formula for logarithmic topological Hochschild homology. The latter is analogous to results of Weibel-Geller for Hochschild homology of discrete rings, and of McCarthy-Minasian and Mathew for topological Hochschild homology. For example, our results imply that logarithmic THH satisfies base-change for tamely ramified extensions of discrete valuation rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源